大数据培训
美国上市大数据培训机构

400-111-8989

大数据培训

面试时如何判断该公司大数据科学团队实力?

  • 发布:大数据培训
  • 来源:面试题
  • 时间:2018-12-14 13:51

面试时如何判断该公司大数据科学团队实力?如果你所面试的公司只有一位数据科学领导者并且他们正在建立一个团队,你可以询问他们计划如何处理下面提出的问题。但请记住,承诺一个理想的系统总是比实现一个更容易。面试时如何判断该公司大数据科学团队实力?

 面试时如何判断该公司大数据科学团队实力

1、没有数据工程或基础设施

数据科学要求数据在分析环节能被方便使用或获取。如果公司没有一个维护良好的数据基础设施,那么你将无法获得工作所需。数据工程师的职责是获取数据以供数据分析环节使用,如果公司没有数据工程师,那么你不得不自己完成数据获取工作。如果你觉得你能胜任数据工程师的角色,上述问题可能无所谓,否则你不得不在获取有价值的数据上花费很多精力。

在面试期间要问的问题:贵公司的数据基础设施是什么样的?维护者是谁? 数据通常采用什么格式(Excel、SQL数据库、csv)?

2、没有数据科学家之间的同行评审

一个强大的数据科学团队有办法确保任何错误不被遗漏。实现方法包括代码审查、练习演示以及与团队的一致性检查。如果团队不能始终如一地执行这些操作,那么错误在工作交付之后才会被发现,并导致某些人因此受到斥责。

在面试期间要问的问题:团队采取哪些步骤进行质量保证和同行评审?

3、团队中没有标准的语言集

许多数据科学团队允许团队中的任何人使用他们想要使用的任何语言。这个想法的初衷是,如果每个人都使用他们喜欢的语言,工作将更快完成。但这种做法存在一个很大的问题:当每个人都使用不同的语言时,人们无法将自己的工作交付给其他人。每项数据科学任务都由独立的个体负责,如果他们辞职了、生病了、或者需要帮助时,没有人能够接手他们的工作或者帮助他们,这就会造成一个非常紧张的工作环境。其实在工作中使用R、Python、甚至SAS其实都是可以的,但团队必须使用一套一致的语言。

在面试期间要问的问题:您的团队使用哪些语言?贵公司如何决定是否采用新语言?

4、不了解数据的需求层次

与没有数据基础设施类似,有些公司对人工智能这样的概念感到非常兴奋,但却没有相应的基础。机器学习和人工智能要求公司具备高水平的数据科学成熟度,包括了解如何构建模型、它们的局限性以及如何部署它们。当公司不切实际的期望与现实相遇时,你可能会受到指责。

在面试期间要问的问题:公司如何平衡花费在实现复杂算法(如人工智能)与基础性工作(如清洗数据、检查数据质量和添加日志)上的时间?

5、团队没有版本控制

成熟的数据科学团队使用git(开源的分布式版本控制系统)来跟踪分析和代码的变化。不够成熟的团队则使用诸如共享网络文件夹之类的方法,采用这些方法会导致你无法了解内容是何时被更改的、内容为何被更改、以前版本的内容是什么。甚至有些团队根本不会共享代码,只依靠数据科学家的个人笔记本电脑进行工作。你应当像避免瘟疫一样,对最后列举的这种团队敬而远之。 因为团队若无法共享代码,则团队成员也无法一起工作。

在面试期间要问的问题:贵公司如何在团队中共享代码?是所有代码都是共享的还是只是其中一部分?

6、未划分运行报表和做分析间的界限

创建和维护报表、构建数据科学模型、将机器学习模型投入生产等不同的工作任务所需的技能组合都是不同的。如果公司无法明确每个人具体做什么工作,那么你将以完全不同于你预期的方式开始并结束你的工作。相信你并不希望在第一天进入公司时,期望的工作内容为建立时间序列预测,结果发现实际工作任务却是刷新月度销售的Excel电子表格。

在面试期间要问的问题:贵公司如何划分报表管理、分析、生产模型构建的任务?

感谢大家阅读由大数据职场分享的“面试时如何判断该公司大数据科学团队实力?”希望对大家有所帮助,了解更多专业课程培训内容请关注达内大数据培训机构官网。

免责声明:以上内容仅作为信息传播,文中部分信息来源于互联网,仅供阅读参考。

预约申请免费试听课

填写下面表单即可预约申请免费试听!怕钱不够?可就业挣钱后再付学费! 怕学不会?助教全程陪读,随时解惑!担心就业?一地学习,可全国推荐就业!

上一篇:大数据开发求职面试攻略之大数据面试题
下一篇:大数据工程师面试时注意事项
10道算数题帮你学习java语句

10道算数题帮你学习java语句

应届毕业生能面试大数据开发工程师?

应届毕业生能面试大数据开发工程师?

大数据工程师面试时注意事项

大数据工程师面试时注意事项

面试时如何判断该公司大数据科学团队实力?

面试时如何判断该公司大数据科学团队实力?

选择城市和中心
贵州省

广西省

海南省