大数据培训
美国上市大数据培训机构

400-111-8989

热门课程

大数据科学家求职攻略清单请收好

  • 时间:2018-07-11 13:23
  • 发布:大数据培训
  • 来源:大数据职场

大数据科学家求职攻略清单请收好,毕业季,现在有很多应届毕业生面试,面试时应该保持一个好心态,在求职的道路上请保持积极的态度,作为应届生不要被一次次面试、笔试失败丧失信心,请继续补充知识、练习项目并参加一些竞赛积累经验等。大数据专业的同学请注意,送你一份大数据科学家求职内容清单请收好:

大数据科学家求职攻略清单

一、机器学习

机器学习项目是数据科学产品组合的另一个重要组成部分。现在,在开始进行一些深度学习项目之前,请保持耐心。不要一开始就构建复杂的机器学习模型,而要坚持从基础知识开始学起。线性回归和逻辑回归是很好的开始,这些模型更容易解释并能清晰地与上层管理人员沟通。此外,我还建议专注于具有业务影响的项目,例如预测客户流失,欺诈检测或贷款违约等,这些比预测花型更实用。

如果你是Python用户,请使用Scikit-Learn学习库。而对于R用户,请使用Caret软件包。你实践的机器学习项目应该传达以下技能:

选择使用某个具体机器学习模型的原因

将数据分成训练/测试集(k-fold交叉验证)以避免过度拟合

选择正确的评估指标(AUC、adj-R ^ 2、混淆矩阵等)

特征工程和选择

超参数调整

二、数据清理

数据科学家预计在一个新项目的清理数据处理上花费多达80%的时间,这对于团队来说是一个巨大的代价。如果你可以证明你在数据清理方面经验丰富,那么你将立即变得更有价值。练习这项能力的方法是创建一个数据清理项目,找到一些混乱的数据集并开始进行清理。

如果你使用Python语言进行编程,那么Pandas是一个很好用的库,如果你使用R语言编程,那么你可以使用dplyr数据包。你实践的数据清洗项目应该确保展示以下技能:

导入数据

加入多个数据集

检测缺失值

检测异常

输入缺失的值

数据质量保证

三、交互式数据可视化

交互式数据可视化包括诸如仪表板之类的工具,这些工具对于数据科学团队以及更多面向业务的最终用户都是很有用的。仪表盘允许数据科学团队进行协作并共同绘制见解。更重要的是,它们为面向商业的客户提供了交互式工具,这些人专注于战略目标而不是技术细节。数据科学项目的交付成果往往以仪表板的形式出现。

对于Python用户而言,Bokeh和Plotly库是非常适合用来创建仪表板的。而对于R用户,可以使用RStudio的Shiny软件包。你实践的仪表板项目应该强调这些重要技能:

包括与客户需求相关的指标

创建有用的功能逻辑布局(易于扫描的“F模式”)

创建最佳刷新率

生成报告或其他自动操作

四、探索性数据分析

数据科学的另一个重要方面是探索性数据分析(EDA),这是一个生成问题并用可视化方法对其进行调查的过程。 EDA允许分析人员从数据中得出结论来推动业务影响,它可能包括基于客户细分的有趣洞察,或基于季节效应的销售趋势。通常你可以通过探索性数据分析来得到一些有趣的发现。

用于探索性分析的一些有用的Python库有Pandas和Matplotlib。对于R用户而言,ggplot2软件包将会很有用。你实践的EDA项目应该显示以下技能:

能够制定相关的调查问题

识别趋势

识别变量之间的协变

使用可视化有效地传达结果(散点图,直方图,饼图等)

五、沟通

沟通是数据科学的一个重要方面,对于工科人员而言这点尤其欠缺。能够有效地传达结果是区分优秀的数据科学家与伟大的数据科学家的重要衡量标准之一。无论你的模型多么华丽,如果你不能向队友或顾客解释它,你都不会得到他们的支持,就如同对牛弹琴一般。幻灯片和Notebook都是很好的沟通工具,可以将你的机器学习项目按照项目过程以PPT的形式展示,也可以使用Jupyter Notebook或RMarkdown文件进行沟通。

确保了解你的目标受众是谁,向高管呈现的内容与向机器学习专家呈现的内容二者是完全不同的。确保具备这些技能:

了解目标受众

提供相关的可视化

幻灯片不要写太多的内容

确保演示文稿流畅

将结果与业务影响联系起来(降低成本,增加收入)

感谢大家阅读由大数据职场分享的“大数据科学家求职攻略清单请收好”希望对大家有所帮助,了解更多专业课程培训内容请关注大数据培训机构官网。

免责声明:以上内容仅作为信息传播,文中部分信息来源于互联网,仅供阅读参考。

上一篇:高薪大数据分析师需要具备的专业技能有什么?
下一篇:没有下一篇了

大数据培训机构哪个好?data培训机构哪个靠谱?

大数据培训机构有哪些?达内大数据培训机构怎么样?

大数据科学家求职攻略清单请收好

高薪大数据分析师需要具备的专业技能有什么?

<
选择城市和中心
贵州省

广西省

海南省